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Abstract. In the f is t  pan of this paper we study the Flation between spatial slruclure and 
information processing properties of layered king spin neural networks with l,?teral interactions. 
The interactions h e w e n  layers are given by the Hebb rule. the interactions within layen by 
Ule so-called anti-Hebb rule. Secondly we study the develupment of spatial smcture in such 
networks as h e  result of an unrupemized leaming process (now both neurons and interactions 
are dynamical variables). By calculating the SpeCtNm of the output cova i i an~  matrix as's 

function of the spectrum of he input cov&ce matrix, we show how the spatial characteristics 
of the input signals are renected in the information processing properties of the equilibrated 
system. 

1. Introduction 

Biological neural networks share with magnetic systems the property of consisting of a 
large number of ‘interacting noisy microscopic elements (the neurons), which are more 
or less similar. This enables the application of statistical mechanics in studying neural 
networks, if one accepts a reduction in tbe number of degrees of freedom of individual 
neurons. Such a reduction cannot be avoided if any analytical progress is to be made in 
studying networks consisting of more than just a few neurons which interact. in a non- 
trivial way. Furthermore, statistical mechanics simply shows that macroscopic features 
of large interacting particle systems usually do not depend on details of the microscopic 
elements (universality). Motivated by neuro-anatomical data the aim of this paper is to study 
analytically the function and development of spatial structure in layered neural networks 
with lateral interactions. The neural interactions are assumed to evolve in time according 
to Hebbian-type [ I ]  rules; spatial structure leads to an additional position dependence of 
interactions, in contrast to the fully connected models studied in the early (pioneering) 
papers by Hopfield 121 and Amit er ul [3]. 

Two classes of models in which neural interactions carry a position dependence have 
been studied in the literature (apart from a simple organization in uniform layers). The 
common ingredient of the first class is that position dependence is the result of random 
dilution (either uniformly [4J, in a layered context 151 or in a modular context [6]). The so- 
called extreme dilution (satisfying acenain scaling requirement), which is mostly employed, 
simplifies,mathematical analysis, but is no longer realistic biologically. The second class of 
models allow for a specific position dependence of  the density (or strength) of interactions 
[7-91, which is the direction we will take. Our leaming mles will be as follows: between 
layers interaction modification is proportional to the state correlation of the two neurons 
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involved, within layers modification is proportional to minus the state correlation of the 
neurons involved. The latter prescription is often referred to as the anti-Hebb rule and 
has been shown to yield interesting system-theoretical properties [1C-l3]. Layered Ising 
spin models with such interactions (without additional spatial structure) remain ergodic in 
the thermodynamic limit, which allows for exact analytical solutions [14,15]. In order to 
finally study the development of spatial Structure the interactions will have to be treated 
as dynamic variables (in addition to the neurons), which complicates models considerably. 
The usual strategy is to resort to the adiabatic limit (which is justified for biological neural 
networks, since the time-scale for the evolution of interactions is usually much larger than 
the time-scale of neural processes). Formally one can now proceed. However, in order to 
go beyond deriving general statements [IC181 or presenting simulation results [13,19] one 
will have to calculate the state correlations between pairs of neurons that drive the learning 
rules. Apart from networks with linear neurons [20,2l],'this can be done for king spin 
models of the type [IS]. 

This paper is organized as follows. In section 2 we study the properties of layered Ising 
spin neural networks with lateral interactions and spatial structure. The interactions remain 
constant. In section 3 we allow interactions to evolve in time in an unsupervized manner 
and study how spatial structure can develop and how the spatial properties of the input 
signals will be reflected in the information processing properties of the equilibrated system. 

H J J Jonker et a1 

2. Spatial structure in layered neural networks with lateral interactions 

In this section we study the properties of layered Ising spin neural networks with lateral 
interactions and spatial structure. Interactions between layers are given by the Hebb rule, the 
interactions wirhin layers by the so-called anti-Hebb rule. The spatial structure is imposed by 
defining the absolute strength of these interactions to be positiondependenr First we derive 
deterministic evolution equations for a suitably chosen set of (local) order parameters. We 
show that the system remains ergodic in the thermodynamic limit under certain conditions 
on the imposed spatial structure, and calculate the macroscopic equilibrium state. Finally 
we study the relation between spatial structure and information processing properties. 

2.1. Definitions 

The neurons are modelled as Ising spins (si = I if neuron i fires and si = - 1  if it is 
at rest), arranged in an architecture of two equally large layers. Microscopic configurations 
of the input neurons and the output neurons will be denoted by the vectors sin E [-I, 1 l N  
and so"' E [-I, I I N  respectively. The output neurons are laterally interconnected viafixed 
interactions Joo and receive additional signals from the input neurons via fixed interactions 
J'O. 

The states s,!" of the N neurons in the first (input) layer will be 'clamped' (i.e. assumed to 
be prescribed), whereas the states si"' of the N neurons in the second (output) layer evolve in 
time according to a stochastic alignment to local fields (or post-synaptic potentials) hi(sou'): 
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The probability of finding the output layer at time f in microscopic configuration gout is 
written as p,(sou'). The stochastic alignment process is govemed by a master equation 

where F;.soU' E (sp"', . . . , -SF,. . . , s b )  and where the transition rates wi(s"") (which 
give the probability per unit time of the state change gout + FisoUt) are defined as 

Wj(S0"' )  + [ I  - g(BsiO"'hi(sO"'))]. (2) 

The function g ( x )  must have the prop&es g(-x)  = -g(x) ,  g ' (x )  2 0, g(x) E [ - I .  I ]  
and g'(0) = 1 (like, for example, g ( x )  = tanh(x)). The inverse 'temperature' B =_ l / T  is 
a measure of the amount of stochastic noise in the alignment process. 

The neural interactions are in this section assumed to be the result of a supervized 
Hebbian type leaming process of the form 

A J!? - sp"' ln A Jr - -S?~ 'S?~ '  
' I  si I I '  

The difference between these two prescriptions (Hebbian learning between layers and anti- 
Hebbian learning within layers) has a natural biological interpretation and, furthermore, 
has been shown~ to generate interesting information processing properties in layered models 
without spatial structure -[ 151. During the leaming stage p specific input patterns x p  E 
(-1, l ) N  have been 'clamped' on the input side, in combination with p corresponding 
output pattems <@ E [ - I ,  I I N  on the output side. Spatial structure in the interactions is 
embedded by introducing for each neuron pair (i, j )  a.quantity Kij which represents the 
number of synapses operating between the axonal endings of j and the dendrites of i (if, 
for instance, the distance between i and j is too large we put Kij  = 0). The interaction 
matrices can now be written as 

, 
where K > 0 is a constant to be defined later. We will restrict ourselves to the case 
K F  = K F  Vi j ,  so the mamx Jao is symmetric. 

2.2. Derivation of macroscopic dynamical laws 

Since the physical location of neurons has become relevant, any macroscopic level of 
description must involve locally defined order parameters. We divide both the input layer 
and the output layer into n equally large non-overlapping clusters of adjacent neurons, 
defined by the index sets I$ and I?' respectively (k = I,:. . , n ) .  The number of neurons 
in each cluster is N / n .  Our local order parameters are now chosen to be the familiar' 
overlap parameters (which measure correlation between the microscopic spin variables and 
the embedded pattems), calculated within the clusters: 
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We will use the following notations: q@ = ( q f . .  . . , 4:) and q k  = (41,. . . ,q f ) .  The 
analysis of the behaviour of networks of this type in terms of local order parameters has 
been performed in [8,9]. The essential assumptions for this analysis to apply are: 

The number of clusters n is sufficiently small, so that dynamic mean-field theory 
becomes exact in the thermodynamic limit For the present model this implies the 
scaling requirement n 2 p  << a. 
The typical length scale for variations in the spatial structure parameters K,: and K r  
is much larger than the cluster size. 

The first assumption has been shown to guarantee [8,9,22] that by taking the 
thermodynamic limit the macroscopic probability distribution evolves in time according to a 
Liouville equation. It represents an upper limit to the number of different order parameters 
that can be expected to evolve in time according to exact dynamic mean-field laws. Using 
the second assumption, we can write the local fields hi(sou') in terms of macroscopic 
quantities only: 

H J J Jonker et a1 

where the constant K in (3). (4) is chosen as K 
are defined as 

N / n ,  and where the matrices A and B 

These matrices represent the spatial structure at the coarse-grained cluster scale. Note that 
(6) becomes an exact equality if we choose the structure matrices K ' O  and KOo to be constant 
within clusters. 

The evolution in time of the macroscopic state probability 

P 

P,(ql, . . . , q P )  = c p,(sO"') n 6 [ q u  - q ' ( s O U " ) ]  
out @= I 

turns Out  to be govemed by a Liouville equation (on finite time-scales) in the thermodynamic 
limit N -+ 00 (see f8.91 or the review [221). The evolution in time of the np order 
parameters (q@] thereby becomes deterministic. The laws governing this deterministic 
evolution are the following set of coupled non-linear differential equations: 
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2.3. Equilibrium 

The zero-temperature evolution equations are 

The system (9) can in principle have numerous fixed-point attractors. If we choose, for 
example, Aki = 0 and Bki -&, we obtain the equations describing n decoupled Hopfield 
networks [2] ,  each of which is. known to have many stable states [3].: Some less trivial 
choices for B were studied in [SI, which sustain the picture of a wealth of fixed-point 
attractors. This picture, however, changes drastically if  there is no positive feedback in the 
system, i.e. if all eigenvalues of B are positive. In the latter case we will show that there 
is only one global attractor in the system, given by 

$ = B-'Am' p = 1 . ~ . . p .  (10) 

The only additional and necessary condition for this  statement^ to hold is that the system 
must be able to actually realize the macroscopic state (10): a microscopic configuration so"' 
must exist such that 

In order to show that (IO) is the unique equilibrium solution of (9) we introduce the 
deviations r: q[ - $' which evolve in time according to 

where U ;  = CO, Bk,rf. The matrix B is symmetric by definition and positive-definite 
by assumption. We will expand on the validity of this assumption in section 2.4. The 
non-negative scalar function E turns out to be a global Lyapunov function forthe process 
(9): 

The time derivative of E can be written as 
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(since = I). Apparently E is a Lyapunov function; its minimum is E = 0, .which is 
obtained for.[ = 0 (Vkp). This, in turn, immediately implies (IO). Note that this result has 
been derived without making any assumptions with respect to the distribution from which 
the patterns are drawn. 

A first remarkable aspect of the stationary solution ( IO)  is the linear dependence of the 
equilibrium output order parameters (q") on the input order parameters I d ) ,  in spite of 
the fact that the microscopic system is based on binary elements with highly non-linear 
dynamical rules (there is no noise that might have a linearizing effect). For the fully 
connected model with negative feedback, similar behaviour has been reported in [14,151: 
the presence of spatial structure turns out not to affect this linearity (provided that E is 
positive-definite). Note that the derivation shown above does not depend on the distribution 
from which the patterns are drawn. Equation ( I O )  therefore holds for any choice of the 
patterns. A second important property is the uniqueness of the macroscopic equilibrium 
state: the system remains ergodic in the limit N + 03 and responds to external input in 
a way similar to how an anti-ferromagnet responds to an external magnetic field. Thirdly 
the appearance of the inverse of E is peculiar, since it can lead to counter-intuitive system 
properties. If, for instance, A = E then the equilibrium macroscopic output state will be an 
exact copy of the macroscopic input state. If input information is spatially spread out by 
divergent connections Ax!, this will be counteracted by an appropriate convergent collective 
equilibration process in the output layer, if the lateral output interactions 841 are similarly 
divergent. In section 2.6 we will elaborate on the system behaviour if A and E are different. 

Next we will study the effect of noise in the system on the equilibrium solution h d  
its stability. We shall see that introduction of noise can lift the restrictions on the spatial 
structure (i.e. the smallest eigenvalue of E being positive). For the function ~ ( x )  in the 
definition of the microscopic transition rates of the master equation we choose the saturation 
function, defined as 

H J J Jonker et a1 

if 1x1 < 1 
if 1x1 > 1 .  I "  sign(x) 

sat@) 

This choice is made for computational simplicity; without proof we mention that the results 
for other choices of f i  are qualitatively similar (according to simulations). In the noiseless 
case the macroscopic equilibrium state turned out to be independent of the distribution from 
which the patterns are drawn. This is no longer true if 7 > 0. To highlight only the essential 
properties of the T 0 behaviour, we will, however, restrict ourselves to randomly drawn 
unbiased patterns, so that 

Inspired by the results in [I51 we make the ansatz 

z j "  = [ E  + TI]- 'Am" p = 1 . . . p (13) 

where 1 is the identity matrix 1x1 = &. We again study the evolution in time of the 
variables r[ = q[ - &, for which we find, using (8), (12) and (13) 
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The origin (r: = 0 Vk, p)  is a critical’ point of the evolution ,equation (14) if for all k: 
& = (€sat[€. Qkl)~. This is equivalent to demanding 

Condition (15) is comparable with condition (11) but it is somewhat more severe. By 
choosing the input vectors (m!J] small enough, it is nevertheless not difficult to satisfy (15) 
by virtue of the linear form of ( 1  3). 

Concentrating on the domain where the saturation function is linear, one can infer from 
(14) that (13) is at least locally stable if the mabix I + PB is positivedefinite. This means 
that, given a matrix B, local stability of (14) is guaranteed if one chooses 

T > -Amin(B). (16) 

In appendix B we address thequestion of under what conditions there is global stability. It 
tums out that T > -2A,i,(B) is sufficient to gu,mntee that each initial state converges to 
(13). Simulations, however, indicate that (16) is already sufficient. 

Summarizing, one may conclude that for any coarse-grained structure matrix B one can 
find a noise level sufficiently large to ensure the system will behave linearly according to 
(13). The critical noise level depends on the smallest eigenvalue of B.  

2.4. Translation-invariant spatiul structure kernels 

We will study in more detail spatial structures Kij that depend on the distance ji - j l  only.’ 
By construction we can now write Ax! = a(lk - 11) and Bkf = b(jk - 11); the matrices A 
and B are symmetric Toeplitz matrices. To investigate whether a structure function b gives 
rise to a positive definite matrix B (which is the requirement for finding a unique global 
attractor for T = 0). we can m,&e use of a general statement about Toeplia matrices [23]. 
Reformulated to our purpose this statement reads: 

If Bkf = b(]k - 11) and F ( x )  is defined by ’ ’ 

~.~ . .  

(17) 

then all eigenvalues A of B, denoted by A ( B ) ,  satisfy the inequalities 

min F ( x )  < A ( B )  < max F ( x ) .  
XEI--K.rI .rEI--n.xl 

Since F(x )  can often be calculated analytically, these inequalities enable us to check 
whether B is positive-definite. In table I we list the function F ( x )  (17) for some choices 
of the structure function h. 

The impression one obtains from table I is that the concavity versus convexity of 
the structure function h is an important property. The triangular shape represents the 
intermediate case. These observations are indeed correct: in appendix A we prove that 
the matrix Bkf = h(lk -11) is positive-definite if b is a positive, monotonically decreasing, 
concave function. These conditions on h are sufficient, bilt not necessary. This can be 
illustrated by studying the Gaussian structure Bk, = exp(-lk - 112/2u2), which is partly 
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Table 1. Examples of smctm functions b and eigenvalue properties of corresponding Smcture 
matrices 81, = h(lk -11); A(8) > minIsl-n.nl F ( x ) .  Note that, with respect to the sign of 
min Flx).  the shape of h (concavity Venus convexity) is more impOMnl than the width I I J .  H ( x )  
denotes the slep function: H l x )  = I for x 2 0 and Htr) = 0 otherwise. . 

F ( x )  bI0) + 2 cz=, h(k) cos(kx) , min F t x )  
IEl-r.n\ 

Shape htlkl) 

Hyprbola l l  + 1kD-I -2In~2sin1x/2)1cosx+(n-x)sinx-l D O  
sinh VI 

cosh au - cosx 
I - COS(t,,X) 

sin(mr)cos(x/2) - 211~cos(wx) sin(xj2) 

cos(wx) - cos[(w + 1)xl 
1 - cosx 

Exponentialx expl-ielkl) > O  

= o  ~~~ ~ 

Triangleb ( I  ; $p? - Ik l )  u r f l  -cOSX) 

C O  parabolab ( l - [ ~ ] * ) H l ~ ~ ~ - l k l )  
2 ~ 2  sin3(x/2) 

Blockb H l w  - Ikl) C O  

convex (Ik - I 1  < U )  and panly concave (Ik - I 1  > U ) ,  but nevertheless corresponds to a 
positive-definite matrix E :  

(the integral cannot yield 0 because it is not possible to satisfy E;=, xx exp[-(t -k)*/uZ] = 
0 for all t ) .  

Whether or not our zero-temperature two-layer spatially structured neural network has 
a unique macroscopic fixed-point attractor, which at the macroscopic level corresponds to 
performing a nice linear transformation, turns out to depend critically on the shape, or rather 
on the second derivative, of the function describing the position dependence of the lateral 
connection density. 

2.5. The continuum limit 

If the number of clusters n is large (with the restriction n2 << a l p ,  N + w), we can 
take a continuum limit and replace the cluster labels by continuous position vectors x and 
y. For q k  we write q(x), Ak, -+ A(x, y) and Ekl -+ E(x.  y). The evolution equations (8) 
become 

where Din and Do"' denote the spatial regions defining the two network layers. In the 
noiseless case (T = 0) the equilibrium value G(x) is the solution of 
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provided that B is positive-definite, i.e. for all @ E Lz(Dou') 

@(z)B(z. y)@(y)dzdy > 0. (20) 

The proof that the equilibrium state is defined by (19) runs along the same lines & the proof 
for the discrete case (i.e write down the evolution equation for ~ ( z )  qfz) - @(E) and 
define the Lyapunov function E s j d r d y  B ( z , y ) ~ ( z )  . ~ ( y ) ,  which obeys (d/df)E < 
-2E). 

For translation-invariant and infinitely large systems (A@,  y) = a(lz - yl), B ( z ,  y) = 
b(lz - 211) and Din== Do"'= (-00. w)~) ,  the integrals represent convolutions, so that their 
Fourier transforms factorize. We adopt the 'following conventions towards notation: 

&(k) = F[@(z) ;  k] E 

@(I) = F-'[&(k);  11 [ 2 7 ~ ] - ~  dk &(k)e-'"'" 

(@@'L')(Z) s ~ dy @(z - Y)*(Y). 

dz @(z)eir'z I 
I 

J 
If we restrict our analysis to order parameter fields and spatial structure kemels which 
are in the Hilbert space L*((-,dO, CO)% we can use the factorization F[(@ C3 W)(z);  kl = 
&(k)$(k), so that the condition for tinding the unique macroscopic fixed point (20) becomes 
6(k) > 0 for all k. If this condition is satisfied, the solution of (19) is given by 

which provides a simple analytical expression of the macroscopic equilibrium state. If T > 0 
and ~ ( x )  = sat(x) in (IS), then (for random unbiased patterns) the unique macroscopic 
equilibrium state can be calculated similarly: 

provided that T > -2minr&k). 

2.6. Simulations 

We performed simulations of our model with ~N = 1530 input and output neurons. 
Furthermore,  since^ at' this stage our prime interest is in spatial properties rather than 
information capacity, we restricted our simulations to p = I .  Each layer was divided 
into n = 51 clusters. each consisting of 3O'neurons. Since the resulting cluster size is 
rather modest, fluctuations could not be ignored. Therefore quantitative statements about 
the simulations are given in the form of time averages of the cluster correlations qk(sou'). 
The (fixed) input state Si" was chosen such that at the macroscopic level the input cluster 
correlations were to acquire a Gaussian shape: 

mk(sin) = yexp[-(k - k)z/2cr2] (23) 
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Figure 1. 
Macroscopic input state Imk 1, equation (23). as used for theoretical predicdons. 

(a) Macroscopic input state (mr) as used in simulations (roughly Gaussian). (b )  

with = 26, y = 0.6 and a = 2. ~ The actual values of the cluster correlations resulting 
fmm the fixed microscopic configuration sin is shown in figure I@); the idealization (23) 
(used for calculating the prediction of our theory) is shown in figure I@). 

First we simulated the noiseless case T = 0 and chose for the microscopic spatial 
StNCtUre: 

K,!; = exp(-rLli - j l )  

with r: = 0.009 and r; = 0.004. Figure 2(u) shows the macroscopic output state 
&(soYt)  in equilibrium resulting from the actual simulations, given the input signals depicted 
macroscopically in figure I@). In order to compare this result with the theoretical prediction 
(IO), we first have to calculate the coarse-grained structure matrices A and B defined in 
(7). For 6, for example, one obtains for the present choice of ( K ’ O ,  K - ]  in an n-cluster 
arrangement of N spins: 

Ky = exp(-rAli - j l )  

Lsinh(rA) + exp(-rLL) - 1 
2Lz sinhz(rL/2) 

Bkk = 

with L = N/n (the cluster size). If both r b  s riL and r. = rLL are small (as is the case 
for the values given above), then A and B are fairly well described by exp(-r,lk - ll) 
and exp(-rblk - 11). respectively. The conditions r, << 1 and rb << 1 are equivalent 
to the familiar requirement that the typical length scale of fluctuations in spatial structure 
must be much larger than the spatial size of the individual clusters. If we insert for A 
and 6 the resulting exponentials we can calculate the theoretical prediction (10) for the 
macroscopic equilibrium state the result is shown in figure 2(b). In the same picture we have 
plotted the result obtained by taking the continuum limit (full curve), as given by (21). with 
m(x) = y exp(-xz/202). o(lx - yl) = exp(-r,lx - yl) and h(lx - yl) = exp(-rblx - yl). 
The corresponding analytical expression for q ( x )  is (note: the spatial dimension of the 
system is I)  
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Figure 2. (0) Simulation result: macmscopic oulpul state [@kt in equilibrium (averaged over 
20 flips per neuron) a T = 0. given the input of figure l(a) and an exponential svUclure 
(r; = 0.009. i-; = D.CW). (h)  Theoretical prediction of the macmscopic output state 
according t i  Ule discrete theory (IO). Full curve: prediction according to the continuum theory. 

with @(z) E 2"fiep(z2)erfc(z) = ~zmexp(z2 - t2)dt.  If r. = rb, then the output 
correlations will indeed be exactly equal to the input correlations. From figure 2 we may 
conclude that the three results (simulations, discrete theory, continuum theory) are in good 
mutual agreement. 

Next we considered the case T z 0 and performed simulations with triangular-shaped 
spatial structures (Q) is the step function): 

~ ~ ~ = ( l - r ~ ~ i - j ~ ) ~ ( ~ ~ - r ~ ~ i - j ~ )  . ~ ~ = ( ~ - r ~ ~ ~ - j ~ ) ~ ( l - r ~ ~ i - j ~ )  

In this case the macmscopic structure matrices are found to be (k # I): 

. , .  

Ax! = ( I  - i -aIk-l l )8(1 - r o l k - ! l )  B k r = ( l  - r ~ l & - l l ) ~ ( l - r b ~ k - ~ ~ )  

with r, = riL and rh = rAL (L again represents the cluster size N/n) .  For r, and rb small 
the above expressions are good approximations for the diagonal elements k = 1 as well. 
Our simulations were performed for r. = and rh = $. In figure 3 we have depicted 
the simulation result and the theoretical result from the discrete theory (13) for the choice 
T = 0.1; figure 4 indicates the results for the higher noise level T = 1.0. According to 
(22), the continuum theory predicts 

Analytical evaluation of this integral is rather complicated, but it shows clearly how 
increasing the noise level T has a damping effect both on the amplitude and on the spatial 
oscillations of the macroscopic state (compare figures 3 and 4). 

We may conclude that, provided the variations in spatial structure involve length scales 
which are indeed much larger than the cluster size, both the discrete theory (at the level 
of individual cluster correlations) and the continuum theory (in which the order parameters 
have become fields) are in good agreement with simulations (even for relatively small system 
sizes). 
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Figure 3. (U)  Simulation result: macroscopic output state &I in equilibrium (averaged over 
20 Rips per neuron) at T = 0.1, given lhe input of figure I@) and a ViangulaF s(Ncture 
(7; = (U-I. r; = (8LI-I), (h)  Theoretical prediction of the macmscopic output sliite b j k )  
according to the discrele theory (13). 

Figure 4. (a) Simulation result: macroscopic output state (&) in equilibrium (averaged over 
20 Hips per neuron) at T = 1.0, given the input of figure I(u) and a Piangular sLIIICtw 
(r; = (6LI-I. r; = ( U - I ) .  (b) Theoretical prediction of Ihe macroscopic output State ( i k )  
according to the discrele theory (13). 

3. On the development of spatial structure by unsupervized learning 

Next we turn to the question of how spatial structure can develop in layered king spin 
neural networks with lateral interactions, as the result of an unsupervized learning process, 
and how the developing structure depends on spatial properties of the information presented 
in the input layer. Now both neurons and interactions are dynamical variables. Interactions 
between layers evolve in time according to the Hebb rule, the interactions wifhin layers 
according to the so-called anti-Hebb rule. First we show that if the (spatially structured) 
initial interaction matrices have a separable structure, this structure will be preserved by the 
leaming process. This important property enables us to describe the evolution in time of 
the interaction matrices on a macroscopic level. We calculate the spectrum of the output 
covariance matrix in equilibrium as a function of the spectrum of the input covariance matrix 
and show how the spatial properties of the input signals will be reflected in the information 
processing properties of the equilibrated system. 

3.1. Defiifions 

Both neurons and neural interactions will now be defined as dynamical variables. Neurons 
are again modelled as king spins, arranged in an architecture of two equally large layers. 
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The output neurons are laterally interconnected via time-dependent connections J"(t)  and 
receive additional signals from the input neurons via rime-dependent connections J%). 

The states s,i" of the N neurons in the first (input) layer will be prescribed. The states spt~ 
of the N neurons in the second (output) layer evolve in time according to a stochastic local 
field alignment described in section 2.1. However, here the process (1) is non-stationary 
due to the fact that both the interactions within and between the two layers and (possibly) 
the prescribed input states sin are timedependent. We assume the interactions to evolve in 
time according to the Hebbian [ I j learning rules introduced in the previous section: 

(with the scaling constant K > 0 to be determined later) which are now stochastic non- 
linear differential equations (since the spin states are stochastic variables). The decay term 
has been introduced simply to prevent interactions from unbounded growing. 

It is not realistic to assume that one can solve the above combined stochastic system 
of evolving spin states and evolving spin interactions analytically at the microscopic level 
of individual spins and individual interactions. However, we can exploit the fact that in 
biological systems the characteristic timescales involved in the evolution of interactions is 
much larger than the time-scales of the neuronal dynamics: I >> 1. If r is sufficiently large 
we may, as far as neuronal evolution is concerned, assume the interactions to be constant 
and replace the above equations by 

r--J!? d .  E --(spu')s!" 1 - E J . .  io J '1 dt ' I  K 

in which brackets denote averaging over the asymptotic microscopic probability distribution 
of the process ( I ) ,  given the stationary values (Jip), ( J r )  for the interactions. In other 
words we restrict ourselves to the adiabatic limit. 

3.2. Macroscopic dynamical laws 

In the previous section we considered only fixed interaction matrices with a separable 
(Hebbian) structure, which enabled the derivation of evolution equations for macroscopic 
order parameters. In the present case we can only choose the initial interaction matrices 
to have a nice structure; we will have to prove that this~structure is preserved by the 
unsupewized learning process (24). (25). ~ , 

Suppose the neural interactions are of the form 

where, for simplicity, the patterns c@ and xw are drawn at random from a uniform 
distribution on [-I. and where the quantities (K$ .  K P }  represent the spatial structure 
which is assumed to vary slowly with distance. This form is more general than the one 
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studied in section 2 (the latter corresponds to choosing i u "  = Ellu = &). As in section 2 
we define a partitioning of each layer into n clusters (IF, Ipt] and corresponding coarse- 
graine&matrices, which in the present case carry additional pattern indices 

H J J Jonker et ai 

and find that the local field at output site i E I? can be expressed in terms of cluster 
correlations 

If variations in the matrices {K'O. K W )  occur~only on length scales much larger than the 
cluster size, the above relations again become equalities. Since the microscopic dynhical 
laws rely only on how the local fields depend on the system state, we might as well take as 
a starting point a situation where spatial structure variations occur only on the cluster scale. 
Therefore we study the situation where the initial interactions {J$(O), Jiy(0)} already have 
the coarse-grained form 

In this case we recover (26) directly (which now has become a strict equality). If we choose 
for the function g ( x )  in the microscopic transition rates (2) the saturation function (12) and 
make sure that the scaling requirement n 2 p  << f l  is fulfilled, we find in the limit N + 00 
the (generalized) deterministic laws for the evolution in time of the local order parameters: 

The only difference between this'result and the laws found in section 2 is that the tensors 
A and B have become of rank 4 instead of rank 2. Therefore we can take over most of 
the analysis in section 2 directly (if properly translated). We will write y = Ax for the 
contraction yf = xi,, AC,"xf V k ,  & and IH;' = S&,. The analysis in appendix B, applied 
to the present case, enables us to conclude: if the input order parameters m are stationary. 
the unique equilibrium solution of (29) is given by 

c j  = [ B  + T l ] - ' A m  (30) 

provided that the input m is such that condition (15) has been met and that 
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For the large N equilibrium state (30) we can easily calculate, following [151, the 
microscopic equilibrium averages controlling the temporal development (24). (25) of the 
interactions in the adiabatic limit: 

i E I,..' : (sp"') = s a t [ f i z c r  (A;,"~Y - ~rq;)] = ZerqL 
IP" !A 

i # j : (sp"'~,"") = (sPYt)(s?'). 

Note that we have used the fact that (31), in combination with (15). guarantees that in the 
equilibrium state (30) the saturation function need be evaluated only in its linear regime. If 
we insert the above expressions into the unsupervized learning rules (24), (25) we obtain 

The final ingredient to be added is that the microscopic input configuration sin is chosen 
at random according to a stationary distribution, subject to the constraint that the ,input 
correlations are [ m i ) .  By virtue o f  the adiabatic limit only the expectation values of the 
microscopic input variables will determine the evolution of the interactions. If we restrict 
the allowed inputs according to E,, ImFl < 1 (Vk) and use the fa& that the distribution of 
the pattem vectors (x" )  is uniform, we can write (sf") = E,, ,$m; for k E IF. Inserting 
these expressions into the learning rules and choosing K 5 N / n  .we obtain the main result 
of this subsection, which is the proof that the structure (27). (28) will be preserved: 

3.3. Evolution of interactions descrihed at a macroscopic level 

Since the structure (27). (28) of the interaction matrices is preserved by the unsupervized 
learning process (24). (25) we now have the opportunity to describe the evolution in time of 
the neural interactions at the level of dynamic order parameters [A:,", Er], in a way similar 
to how we analysed the neural dynamics. If the input order parameters { m i ]  are drawn 
according to some probability distribution P [[mi]] (which is constant during the learning 
process) and.if we assume T to be sufticiently large to ensure self-averaging of A and B 
with respect to P,  .we find that the evolution in time of the interaction oder  parameters is 
govemed~by 
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(in which we have denoted averages over P[.] by (. . . ) p ) .  These laws are coupled and 
non-linear because the output order parameters depend on the input order parameters m 
through the tensors A and B. The parameter r only gauges the time-scale for the evolution 
of interactions. In order to suppress notation we will put r = 1 and introduce the input 
covariance tensor M and the output covariance tensor Q 

H J J Jonker et a1 

I(" - -I(->, M F  = (m;m;l)P Q,, = (qk qf )P 

(which are by definition semi-positivedefinite). The differential equations (32). (33) are 
such that negative eigenvalues of B will vanish at least exponentially. This means that, if 
there is some amount of noise in the system, sooner or later there will be a moment such 
that T > -2A,in(B). This can be seen by writing (33) in an integral form: 

~ ( t )  = B(0)e-f' + e'"'-" Q(t')dt' I, 
(the tensor Q is positive-definite). From the moment when T z -2&,,,"(B) we know that 
4 depends on m, A and B according to (30). The differential equations (32). (33) then 
become 

(34) 

(35) 

d 
- A = - t A + C M  
dt 
d 

--B = --EB +CMCT 
dt 

where C [B + T I  ] - ' A .  CT denotes the transpose of C in'both index pairs (k,  I )  and 
(p ,  U), i.e. (CT)tl;' C,!;'. Since the distribution P is stationary, the input covariance tensor 
M is constant. Note also that the simple relation Q(t )  = C(t)MCT(t) holds. 

The equations (34). (35) are similar to the ones derived in [l5] for the fully connected 
model; the only difference is the rank of the tensors A and B (4 instead of 2). In order to 
analyse the asymptotic behaviour of (34), (35) it turns out that one can follow exactly the 
route followed in [ 151. We wilt not repeat this analysis but take over the final results. The 
behaviour of the system will be described in terms of the covariance tensors M and Q. Let 
A,? denote the ith eigenvalue of M (i = I ,  . . . , np). For r -+ 00 the eigenvalues A,? of Q 
become 

A,? = (A: - G T ) O O . ~  - E T )  i = I , .  . . , pn (36) 

(in which O(x) is the step function). As the temperature T (which turns out to play the 
role of a 'filtering threshold') is vaned, the system undergoes repeated second-order phase 
transitions at the critical values 7, €-'Ay. The behaviour of the system resembles a 
Principal Components Analysis 124.251: components (eigenvectors) of the input covariance 
tensor M that correspond to eigenvalues larger than the threshold A ET can pass through, 
whereas components with smaller eigenvalues are suppressed. The extreme cases are A = 0 
and A > For A = 0 the system is completely transparent: each component of M 
passes through unaffectedly. For A > A& all components of M are. suppressed (no long- 
term order will suwive in the output layer). 

The asymptotic eigenvalues of Q can be readily calculated from the eigenvalues of 
M according (36). Note, however. that in the eigenvalue problem El, Mzx;' = Ax; the 
pattern information (indexed by (p. U)) and the spatial information (indexed by (k,  I ) )  are 
generally intermingled. Funhermork, apart from some special cases, one does not know the 
eigenvectors corresponding to these eigenvalues. 
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3.4. Examples 

In this section we apply the theoretical results obtained on the asymptotic behaviour of 
unsupervized learning to specitic examples. We calculate the spectrum of the output 
covariance matrix. given three specific choices for the statistical and spatial properties of 
the input signals, i.e. for the distribution P [ [ m [ ) ] .  

Example 1 .  As a first example we study the case where the relation between spatial 
properties and pattern indices is constant, so that averages of the type ( @ ) p  can be written 
as 

in which the quantities fr (describing how spatial properties couple to pattern indices) are 
fixed The input covariance tensor M. given the choice (371, becomes 

Mt:," = (mim;l)p = f[f,"P" P" =_ 

Let us define the p quantities F'' the auxiliq matrix f with 

eigenvectors +j and (non-negative) eigenvalues A T  (i = I ,  . . . , p) :  

The eigenvalue problem for M, which acquires the form fL E,, P"frYx; =~hMx; ,  can be 
solved easily in terms of ?: 

AM = AY i = I .  . . . , p eigenvectors : x i  #f fL /FW 

AM = 0 i = p + I .  ..., pn eigenspace : fLx[  = o VP. 
k 

The eigenvalues of the output covariance tensor are therefore given by 

Af = [A/ - E Tle[Ar - cT1 

A ~ = O  i = p + I  ,..., n p .  

i = I ,  . . . , p 

This spectrum turns out not to depend on the details of the parameters f[, only on the 
global strength F" with which individual input sources y'' couple to the system as a whole. 
This example clearly shows that the presence in the input signals of spatial structure. such 
that each input source y'' couples to the system in a spatially different but cnns!ant way, 
does not lead to results other than those obtained for the fully connected network [15]. 
Note, however, that this does not imply that the network will become fully connected 
during the learning process. The final interaction structure, which can only be predicted for 
some special cases (see next example), in general does depend on the choice made for the 
parameters fL and, furthermore, on the initial interactions. 
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Example 2. As a second example we study input covariance tensors with translation 
invariance. For notational and computational convenience we follow the continuous 
approach, i.e. the covariance tensor M becomes a translation-invariant kernel M#”(z - y). 
An important implication of this is that translation invariance will be preserved by the 
learning process. If at time I the system is translation-invariant, we may write 

A”’@, y; t )  = Q’“’(z - y; I) B’“(z. y: f) = b’”(z - y; 1 ) .  

As aconsequence the kernel C in (34). (35) will also be translation-invariant, C””(z. y; I) = 
c’”(z-y; t), so that mnslation invariance is preserved. If we concentrate on the case p = 1 
(the case p =- 1 will be discussed in example 3). then the indices (p, v) can be dropped 
and the evolution equations (34), (35) simplify in Fourier language to 

d ,  A?(k)ri(k; t )  

dt 6 ( k  t) + T -Q(k;  t )  = -<(i(k; I) + 

In addition to the spectrum of the output covariance tensor, which now is a translation- 
invariant kernel Q(z - y) (CMCT)(z - y). we are now in a position to also calculate 
the equilibrium spatial structure itself explicitly by solving (38), (39). In Fourier language 
all relevant operators are diagonal; eigenvalues are simply equal to Fourier components. 
For the output covariance matrix in equilibrium we find the eigenvalues 

A P ( k ) - Q ( k ) = [ A M ( k ) - ~ T ] s [ h M ( k ) - ~ T ]  A‘(k)-A?(k). (40) 

The operation performed by the system at any stage I in the learning process is given by the 
outcome of the spin relaxation: y(z)  = S d y  c ( z  - y; t)m(y). Therefore the equilibrium 
Fourier coefficients E(k) tell us exactly how the system responds to input signals after the 
unsupervized learning stage: 

1 - cT/,lM(k) if ET < A”(k) 
if ET 2 hM(k)  

t(k) = 

If, for example, during the learning stage we present (in a one-dimensional system) input 
states of the type m ( x )  = cos(ox - @), in which the random phase variable 4 and the 
random frequency o are drawn from the distribution 

we obtain the translation-invariant input covariance kernel M(x - y): 

~ ( x  - y) = f cos[o(x - r)] e-f(Aw)‘(x-~l’ 

The I + CO spectrum of the output covariance kernel Q follows directly from (40). In 
figure 5 we have depicted the eigenvalues AM(k) and he(k )  and the Fourier components 
?(k) (using (41)). This picture clearly shows that after the learning stage the system behaves 
as a band filter. 
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U-Au ~ Y u+Aw k- 

Figure 5. (a)  Eigenvalue specmm (AM(k)) of the (mlation-invariant) input mVariance 
matrix and eigenvalue spearum { A Q ( ~ ) )  of he (Wanslation-invariant) output cov&ance mahix 
(f T = A M ( &  + Am). 0 )3 Am). (b) Fourier s p e c m  in equilibrium of the convolution keml 
C as given by (41). Since i ( x )  = jdy CLr - y l m o )  Ulis picture indicates thar atier the 
leaming stage the system behaves as a band filter. Spatial frequencies k in the input for which 
Ik -61 > Am are s u p p d .  

Exumple 3. In OUT final example we expand on the previous one by considering in a one- 
dimensional system input signals of the form m@(x) = y”fm(x - +), p = 1.. . p .  where 
the f@(z) are. even functions, r$ is randomly drawn from a unifonn distribution and 7 is 
randomly drawn from a distribution P(7). Apart from boundary effects (which we will 
neglect) the input covariance kernel M is translation-invariant and its Fourier transform is 

n;lu’(k) = r’”p(k)f”(k) (42) 

where (as with example 1) P” s (y”y”)p. In contrast to the situation with example 1 ,  
the choice made for the functions f 1‘ ( x )  will now have an important impact on the way the 
network behaves, by virtue of the k-dependence of f  in (42). 

If, for instance, we choose f @ ( z )  and f”((r)  in such a way that p(k)j”(k) = 
S , , [ ~ ( k ) I 2  we find 

which implies that correlations between y” and y” with p # U have become irrelevant. 
If, on the other hand, the input sources y” are. projected onto the network according to 
identical Gaussian blobs, f @ ( z )  = f ( r )  exp(-fx2/u2) Vp, one finds 

AY@) = Arf7(k)  

A!@)= [hffy(k)-cT].9[Ar -A(k)] i = l .  . . . , p  

i = 1,. . . , p 

with A(k) = c T / f z ( k )  and [A;) denoting the eigenvalues of the matrix P”. The filtering 
cut-off A(&), which determines whether or not components of r can pass through, has 
now become frequencydependent. This means that after the leaming stage, the filtering 
characteristics depend on the spatial presentation of the input signals. If afterwards the 
input consists solely of high spatial frequencies, a relatively small number of components 
of r can pass through (i.e. only those that have large eigenvalues). In particular, if 
k2 > l o g [ 2 n 0 2 A ~ / ~ T ] / u 2  nothing will pass through at all. If the input is spatially 
constant (only the Fourier component k = 0 is present), A(k) is minimal and a minimal 
number of components will be suppressed. 
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4. Discussion 
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In this paper we have studied the function and development of spatial structure in layered 
king spin neural networks. Interactions between layers develop according to the Hebb rule; 
interactions within layers according to the so-called anti-Hebb rule. This architecture has 
a natural biological interpretation in terms of a layer of excitatory neurons projecting onto 
a layer of laterally interconnected inhibitory neurons [ 14,15]. Spatial structure has been 
imposed by defining the absolute strength of the interactions to be position-dependent. The 
input state is assumed to be known; the output state is the result of a relaxation process. 
The present model is a generalization of the (fully connected) model studied in (14, 151, 
with which it turns out to share the properties that ergodicity remains unbroken in the 
thermodynamic limit and that the state correlations of neuron pairs that are relevant for 
the modification of synaptic interactions can be calculated analytically. These properties 
enabled us to derive detailed analytical results not only for the case of supervized learning 
but also for the (more complicated) case of unsupervized learning. 

In the case of supervized learning the interactions remained fixed. For systems with 
spatial structure that varies slowly with distance we have been able to calculate at the 
level of local order parameters the (unique) equilibrium configuration as a function of the 
input configuration. In equilibrium, under certain temperature-dependent restrictions on the 
system's spatial structure, the output order parameter configuration turned out to be related 
to the input order parameter configuration by a linear transformation. This transformation, 
which depends on the temperature and the spatial structure between and within layers, 
can be calculated exactly and can give rise to counter-intuitive behaviour. Our analysis 
shows that one function of lateral structure may be to induce. through the lateral relaxation 
process, a spatial convergence of information that has been spread out by spatially divergent 
interactions between the layers. 

Next we studied (in the adiabatic limit) the more complicated problem of how spatial 
structure can develop in layered king spin neural networks with lateral interactions, as the 
result of an unsupersized learning process, and how the developing structure depends on 
spatial properties of the information presented in the input layer. If the (spatially structured) 
initial interaction matrices have a separable structure, this structure is preserved by the 
learning process. This enabled us to describe the evolution in time of the interaction 
matrices on a macroscopic level of local order parameters. Although we were able to 
predict the final spatial structure explicitly only in some special cases, we could predict 
the information processing properties of the equilibrated system in all cases. To this 
end we have calculated the spectrum of the output covariance matrix in equilibrium as 
a function of the spectrum of the input covariance matrix. The equilibrated system turned 
out to perform a type of principal component analysis on the macroscopic input signal 
(the latter consists of position-dependent overlaps with a given set of prototype patterns). 
The fact that spatial characteristics and vectorial characteristics of the input and output 
signals are processed simultaneously allows for the development by unsupervized leaming 
of modules that perform tasks like, for instance, band filtering and (spatial) frequency- 
dependent principal component analysis (we have worked out in detail some specific 
examples). A nice property with respect to self-organization is that, apart from some (fixed) 
system parameters. the filtering characteristics are determined by the input the network 
receives during the unsupervized learning stage. 

We regard it an encouraging fact that our spatially structured model, in spite of the 
extreme non-linearity of its ingredients, turns out to perform a type of principal'component 
analysis, as this appears to be a sensible manner of information processing of physiological 
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(sensory) input [12,26,27]. A natural next step will be to apply our results to realistic 
situations and find out what they might predict or explain upon choosing in OUT equations 
specific well documented biological structures, such as the cerebellum. In order to do so, 
we will then also have to take into account Dale's law, which, in the language of this 
paper, states that the interaction matrices must have a specific non-symmetric structure with 
respect to the signs of the matrix elements. This (biological) constraint has not been taken 
into account yet; the function of the present paper has' been simply to develop intuition and 
appropriate analytical tools. 

, 

Appendix A. Concave structure functions 

In this appendix we prove that symmetric Toeplitz matrices B (i.e. matrices of the fonn 
B;j = b(li - j l ) ,  i. j =. I .  ..n) are positive-definite if the function b is a positive 
monotonically decreasing concave function: 

d2 
- -b(X)  > 0 
d i 2  

d 
- -h(X)  < 0 dx 

V x > O :  h(x)  > 0 

In the following proof the key idea, which we owe to Jan de Boer, consists of defining the 
auxiliary variables e,: 

c,-l h(n - I )  cn-2 h(n - 2) - h(n - I )  

ck h(k)  - 2b(k + I) + b(k + 2) k = 0 .  ..n - 3 .  

By construction all q (k = 0.. . n - I )  are positive. The quantities defining our matrix B 
can be written in terms of the (<,<I: 

If we write the quadratic form x . B x  in terms of the new variables (c,) we obtain 

in which 

The matrices T'"" are Toeplitz matrices with a triangular structure function, which have 
already been proven to be semi-positive-definite (see section 2.4, table 1). We conclude 
that L,in(B) > CO > 0. 
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Appendix B. Macroscopic equilibrium for general T 

In this appendix we present the proof that for random pattems the expression 
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q = [ E  + TI] - 'Am (BI) 

0 evolution defines a global (and therefore unique) attractor of the macroscopic set of T 
equations: 

if we impose the conditions 

VLQ : IqFl < I and T > -2hmin(B). (B3) 
P 

For notational convenience we have introduced the summation convention: double 
occurrence of an index means that it is understood to be summed over. To show that 
(BI) is globally stable we study the variables r:: 

P - p@'(q; - G;) 
'k - kl 

where P = 1 + B E .  Note that the conditions (B3) guarantee that P is positive-definite. 
Following [ZS], we write the evolution equations for {r ; )  as linear equations, perturbed by 
non-linearities: 

d 
-r: = -Pi".;' + P:f"@;(BEP-'r) 
dt 

where 

4y(r)  = (r; - #') - (.$"sat[eP(lip - qf)])€ 
= E" { t p ( r f  - $1 - sat[SP(rf - q f ) ] ) ) ~ .  

In the last step we have made use of the fact that we are dealing with random pattems. For 
all {r:} the norm ll@(r)ll = {@;(r)@(r))'/' obeys the inequality 

U@WW 4 llrll. (B4) 

To show this, we define the function y(a, 6) of two scalars a,  h by 

(a - h)  - sat(a - h) 
y(a. b) = 

U 

which can be shown to be bounded according to 0 < y(a, h) < 1 if a E R and h E [ - I ,  I]. 
Because of the first condition in (B3) all Ip"'f1 < 1, therefore we can write 

@ ( r )  = t"'"(r)rr r""(r) = ( S U P " &  4 ' ) ) ~  
with 0 < y€(r, q )  4 I .  The quadratic form x"r"px"  obeys 

o < x''i-,,,d' = q))(  6 ( ( s ~ ' ~ ~ ' ) * ) ~  = xyxy .  
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The eigenvalues of the (symmetric) matrix r are therefore between 0 and 1, which proves 
-statement (84). 

Finally we define the non-negative scalar function E (our candidate for a Lyapunov 
function): 

which is zero only for r i  = 0 (Vkfi) .  The time derivative of E ( r )  is 

, ,where we have made use of (84). The function E decreases monotonically as soon as for 
all eigenvalues h(B): - I  < P U B ) / [  I +ph(B)] < 1. These conditions are indeed satisfied 
if T > -2A,,,in(B), in which case E will decrease monotonically to 0 and (SI) is a global 
attractor of the system (82). 
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